If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144x^2+72x-6=0
a = 144; b = 72; c = -6;
Δ = b2-4ac
Δ = 722-4·144·(-6)
Δ = 8640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8640}=\sqrt{576*15}=\sqrt{576}*\sqrt{15}=24\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-24\sqrt{15}}{2*144}=\frac{-72-24\sqrt{15}}{288} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+24\sqrt{15}}{2*144}=\frac{-72+24\sqrt{15}}{288} $
| 6x-19=26+x | | 2x-9=4x+2 | | 12c-1c=0 | | 7x-15=26x-7 | | 6/x-1=x/2 | | 5x+3=125/25x | | 4/5^2x=5/4^4+3x | | 5x-3=125/x | | X-5-2y=0 | | 8m=2m2 | | 7c−3c=20 | | Y=x2+3x-4 | | 4(5x-2)=2((9x+3) | | 9x=x^2-10 | | e^2=3 | | 0=-4.9x^2+48x+160 | | 2k-23=3 | | 2/y+2=10/3 | | 2k−23=3 | | 96=4(d+8) | | 5-2×=8x | | 5(k/3+2)=32/3 | | 5(k/3+2=32/3 | | 8-3(2x-4)=-10 | | 1/5x-3=18-1/2x | | (x+2)(x+3)(x+8)(x+12)=-2x^2 | | 9-z+3-2z=0 | | -2x+3(-6x-14)=198 | | 12-1z-2=0 | | 3x+17=x-21 | | -8d-5d+7d=48 | | x-21=3x+17 |